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ABSTRACT

Knowing the location of a train is necessary to develop a
useful service for train passengers. However, popular local-
ization methods such as GPS and Wi-Fi are not accurate
especially on a subway. As an alternative method, estima-
tion of motion state and stop station by using sensors on a
smartphone is being studied for subway passengers. This pa-
per proposes a localization method that uses only a barom-
eter on a smartphone. We estimate motion state from the
change of elevation, and also estimate latest stop station by
the similarity of a series of elevations recorded when the train
stopped and actual elevations of stations. By estimation of
the motion state and the latest stop station, development
of various context-aware services for subway passengers be-
comes possible. Through experiments in four lines of subway
in Tokyo, we demonstrated that the accuracy of estimation
of the motion state is 86%, and estimation of the stop station
is 58%.
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Figure 1: Map of location information that could be
obtained while riding the Tokyo Metro Marunouchi
line (scale 1:45800). Red stars are the position of the
station. Blue circles are the location that it could
be obtained. Its size and depth of color represents
the precision.

1. INTRODUCTION
In the last decade, subway passengers are getting more ea-

ger to use digital gadgets such as a music player, a handheld
game console, an e-book reader and a smartphone [1]. Espe-
cially in recent years, utilization of a smartphone is popular
as enabling wireless communication is becoming available
even under the ground. A passenger can get any informa-
tion anytime even while riding a subway train nowadays.

A subway passenger, however, cannot obtain current lo-
cation information that many applications for a smartphone
depend on because of poor GPS signal on subway. Wi-Fi-
based localization also does not work well due to the lack of
Wi-Fi stations and the inaccuracy of the database. Figure
1 illustrates location information that we obtain while rid-
ing Marunouchi subway line. The location information we
obtained is limited and often differs from the actual location.

If location information is available in the subway, there



are many opportunities to develop applications such as to
announce the next stop, to provide directions after exiting
the entrance of the station in advance and to notify when a
user needs to get off while reading a e-book. Since a train
does not always run exactly following the timetable, obtain-
ing the position of train in the underground is an important
issue.
In this paper, we estimate location of a subway train by

using only the barometer in a smartphone. The latest smart-
phones such as Apple iPhone 6 and Samsung Galaxy are
equipped with a barometer. The proposed method firstly
estimate if the train is running or stopped by the amount
of the change of air pressure. Then, we estimate the exact
station the train is stop by the elevation. We accomplished
58 % accuracy in the estimation.

2. RELATED WORKS
In recent years, many subway passengers use a smart-

phone. [2] estimates the position of train by using accelerom-
eter and timetable. [3] estimates the motion state by using
accelerometer and magnetic sensor. Method using an ac-
celerometer is necessary to complex processing for noise re-
moval because it is sensitively affected by the way to hold a
smartphone. Method using a barometer can simply use mea-
sured values because it is not affected by the way to hold. [4]
estimates the stop station from the similarity of the change
of air pressure while running between stations. The method
cannot determine if the train is running or stopped auto-
matically. It also cannot always match the correct pattern
because of the change of air pressure by the influence of the
opposite side train. [5] is context detection using a barom-
eter. They determine only whether riding on the subway.
In this paper, we determine riding train’s motion state (i.e.,
stopped or running).

3. METHODOLOGY
This research aims to accomplish localization in a subway

by using only a barometer on a smartphone. The change
of air pressure is a good clue to localize a smartphone be-
cause we can estimate both motion state (i.e., stopped or
running) of the train and the exact station while stopping
from the air pressure. The air pressure basically changes
with the altitude, but it swings rapidly in a tunnel due to
Bernoulli’s principle. When a train stops, the change be-
comes relatively stable, and the value reflects the altitude of
the station. With these phenomena, we estimate the loca-
tion of the subway train.

3.1 Calculation of altitude
Firstly, we calculate the altitude from the air pressure

measured by barometer on a smartphone using the following
formula[6].

h = 153.8× (t0 + 273.2)× (1− (
P

P0

)0.1902)

h [m] is the altitude, t0 [◦C] is the sea-level temperature, P0

[hPa] is the sea-level air pressure, and P is the measured air
pressure. In this paper, we utilize the latest temperature and
air pressure provided by the Japan Meteorological Agency.
We conducted a preliminary experiment on the accuracy

of elevation measured by using a barometer in a smartphone.
We measured the elevation while going up and down in the
elevator between the eleventh floor (elevation about 45m)
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Figure 2: Altitude calculated from air pressure mea-
sured in elevator

and the first floor (elevation about 1m) with two iPhone
6 and one iPhone 6 plus. Figure 2 illustrates the result.
A sampling rate of the barometer in the iPhone 6 is 1.32
seconds. A relative change in elevation of each device fits to
the true difference in elevation, but the absolute elevation
in each device is different. Therefore, we use the relative
change of elevation rather than the absolute elevation except
for the estimation of the first stop station.

3.2 Estimation of motion state
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Figure 3: Estimation of motion state: (A)altitude
(B)variance (C)Estimated motion state. Gray area
is actual stop time

Secondly, we estimate train’s motion state (i.e., RUN-

NING or STOPPED) by variance of estimated altitude. In
the following, we explain the detail with the result of the
experiment when we ride a subway train in Chiyoda Line in
Tokyo illustrated in Figure 3. Figure 3(A) shows the alti-
tude calculated from the air pressure. The altitude changes
with the influence of the tunnel as well as the actual eleva-
tion of the line. As an indicator of the change of altitude, we
calculated the variance of altitude in last 10 samples (13.2
seconds). Figure 3(B) illustrates the variance of altitude.
When the variance exceeds a certain threshold, we can sup-
pose that the train is RUNNING, and when it is less than
the threshold, we can suppose the train is STOPPED. In
this paper, we adopt 0.07 as a threshold. In the center of
Figure 3(C) illustrates the result of the decision of the mo-
tion. We smooth the result by omitting frequent change of



the state from the naive judgment.

3.3 Estimation of stop station
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Figure 4: Measured altitude and the actual altitude

Finally, we estimate the station the train is stopped by
the similarity of a series of recorded altitudes and the true
altitudes of stations. Figure 4 illustrates the true altitudes
and altitudes calculated from the air pressure in Chiyoda
line assuming that estimation of stop station works ideally.
Although the absolute elevations are different, the change
in elevation is similar. Therefore, it is possible to determine
the stop station if we detect the motion state exactly. There
are 13 lines in Tokyo, and we assume that the line and di-
rection of the riding train are given in advance, which can
be obtained from an application such as the Google transit.
The proposed method records an altitude when the mo-

tion state changes from RUNNING to STOPPED. After
passing two or more stops, the method calculates the simi-
larity between (A) last n records of altitudes and (B) every
n-length subsequence of the true altitudes of the stations in
a certain line. In order to compare the relative change of the
altitude, the method subtracts the average of A and B from
each element of A and B respectively. Then the method
calculates a cosine similarity with the following formula.

similarity =

n
∑

i=1

Ai ×Bi

√

√

√

√

n
∑
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(Bi)
2

The last station of the section that has the maximum sim-
ilarity is the estimated station.

4. EVALUATION

4.1 Experimental procedure

Table 1: Information of experimented lines
line sta- altitude[m] time

(prefix) tions min ave max [min.]
Marunouchi(M) 25 -7.3 17.6 36.3 50
Hanzomon(Z) 14 -28.9 -10.6 25.5 30
Chiyoda(C) 18 -12.4 -1.0 38.6 38
Hibiya(H) 21 -16.8 -2.9 19.2 30

To evaluate the proposed method, we conducted an exper-
iment to record the air pressure and true motion state with
an iPhone application that we developed. We collected data

of three round-trips in each of four lines out of 13 lines of
subway in Tokyo (Table 1). In the experiment, we utilized
two iPhone 6. We inputted the true motion state manually
every time the train stopped and start running at the sta-
tion. The true motion state is not based on the open/close
of the door, but the actual movement of the vehicle.

4.2 Motion state estimation
We evaluated the accuracy of estimation of motion state

by seeing if a time interval estimated to be stopped overlaps
with the true stop at a station. If there is more than one
estimation of stop at a single station, we regard subsequent
estimations as being incorrect. We calculated precision, re-
call and F-measure where the precision is (number of cor-
rect estimations / number of stop estimations), the recall is
(number of correct estimations / number of stations), and
the F-measure is (2×precision×recall)/(precision+recall).

Table 2: Performance of motion state estimation
line precision recall F-measure

Marunouchi asc 0.913 0.973 0.942
(M-01∼M-25) desc 0.864 0.973 0.914
Hanzomon asc 0.917 0.929 0.916
(Z-01∼Z-14) des 0.735 0.857 0.791
Chiyoda asc 0.788 0.912 0.845

(C-01∼C-19) desc 0.801 0.947 0.866
Hibiya asc 0.669 0.952 0.786

(H-01∼H-21) desc 0.775 0.937 0.846

total 0.808 0.935 0.863

Table 2 illustrates the experim/ental result of motion state
estimation. Recall is from 85% to 97%. Most of the stops
at stations is estimated to be STOPPED. On the other
hand, precision is from 67% to 92%. In this experiment,
the method confirms that the train is really STOPPED only
after three times continuous detection of being STOPPED

because the distance between stations is often short. This
is why we cannot omit misestimating of being STOPPED

while running the subway train.

4.3 Stop station estimation
The accuracy of estimation of the stop station is evaluated

by the rate of the accurate estimation. The number of the
stations used for the estimation is n, and the accuracy rate
is defined as (the number of correct estimations / (number
of stations − n + 1)).

We first evaluated the accuracy with the assumption that
the estimation of motion state works perfectly in order to
evaluate the pure performance of the station estimation. Ta-
ble 3 illustrates the accuracy of the estimation based on the
elevations when a train exactly stopped. Accuracy rate was
67% on average. The more stations the estimation method
utilizes, the higher accuracy the estimation has.

We then evaluated the accuracy with the actual result
of estimation of motion state that contain several errors.
Table 4 illustrates the accuracy of the estimation based on
the elevations when a train is estimated to stop. Accuracy
rate was 50% on average, and it is very different by the
line. In the line whose accuracy of motion state is low, the
accuracy of station estimation is also low. The accuracy is
not so much improved even if the number of station using
for estimation is increased. In order to improve estimation



Table 3: Accuracy of station estimation (based on
elevation when the train exactly stopped)

accuracy rate
line n=2 n=3 n=4 n=5

Marunouchi asc 0.278 0.565 0.742 0.825
(M-01∼M-25) desc 0.319 0.536 0.636 0.762
Hanzomon asc 0.359 0.861 0.939 1.000
(Z-01∼Z-14) des 0.282 0.722 0.788 0.933
Chiyoda asc 0.481 0.686 0.750 0.844

(C-01∼C-19) desc 0.407 0.627 0.813 0.889
Hibiya asc 0.400 0.684 0.815 0.882

(H-01∼H-21) desc 0.417 0.561 0.704 0.765

total 0.367 0.636 0.759 0.847

Table 4: Accuracy of stop station estimation (based
on the motion state estimation)

accuracy rate
line n=2 n=3 n=4 n=5

Marunouchi asc 0.348 0.515 0.619 0.667
(M-01∼M-25) desc 0.290 0.455 0.571 0.633
Hanzomon asc 0.333 0.818 0.833 0.778
(Z-01∼Z-14) des 0.333 0.424 0.367 0.333
Chiyoda asc 0.392 0.583 0.644 0.714

(C-01∼C-19) desc 0.373 0.646 0.533 0.619
Hibiya asc 0.281 0.352 0.431 0.417

(H-01∼H-21) desc 0.421 0.537 0.510 0.521

total 0.327 0.498 0.527 0.553

of stop station, we need to improve the method to estimate
the motion state of the train.

5. DISCUSSION

5.1 Advantage from the related works
This research aimed to accomplish localization on a sub-

way for practical service by using only a barometer on a
smartphone. The result of the experiment is inferior to the
related works in terms of the estimation of the motion state
or stop station, but related works are not suitable for practi-
cal services. [3] needs long-term data including future time
for the determination of a certain time because of smoothing
and peak detection. [4] needs additional technique to iden-
tify if the train is running or stopped. On the other hand,
the proposed method can determine a motion state imme-
diately after starting the application because we utilize only
the air pressure of past few seconds. Therefore, although it
is needed to improve the accuracy, the proposed method is
effective to estimate a train’s motion state and latest stop
station to develop practical services for subway passengers
based on the location.

5.2 Erroneous estimation of motion state
The erroneous estimation of the motion state is caused by

several reasons. First, a train in the opposite track affects
stop decision because it causes a change of air pressure. The
motion state is determined to be RUNNING by the move-
ment of the opposite train even though the current train
has stopped. Secondly, the optimal parameter is different
depending on the line. If we require much longer repeat
of the same motion state when smoothing, erroneous deci-

sion is reduced. But in this paper, we set the number of
necessary repeat considering the shortest distance between
stations within every subway line. As a result, it had many
erroneous determinations that are not smoothed. Thirdly,
there are ground sections in a subway line. This causes the
incorrect stop detection because the change of air pressure is
small on the ground. We need to combine other sensors on
a smartphone, and change parameters to estimate dynami-
cally to improve the method.

5.3 Erroneous estimation of stop station
The erroneous estimation of the stop station is mainly

caused by the error in the estimation of the motion state.
In addition, the change of measured air pressure does not
completely fit to the true altitude of the stations. We need
to study other factors that affect the air pressure such as air
conditioning, congestion and the position within the train.
We can also utilize location information of a smartphone to
filter the result of the estimation even though it has a large
error.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a real-time estimation method

of train’s motion state and the latest stop station by utilizing
only a barometer on a smartphone. We estimate train’s
motion state and latest stop station from the change of air
pressure. Through the experiments in four lines of subway
in Tokyo, we showed that the accuracy of estimation of the
motion state is 86% on average, and estimation of the stop
station is 58% on average. As a future work, we will improve
the accuracy of decision by using other sensors and rough
location information. We also study to estimate riding line
and direction automatically.
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